Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202306.0752.v1

ABSTRACT

SARS-CoV-2 infection triggers distinct patterns of disease development, characterized by significant alterations in host regulatory responses. Severe cases exhibit profound lung inflammation and systemic repercussions. Remarkably, critically ill patients display a "lipid storm", influencing the inflammatory process and tissue damage. Sphingolipids (SL) play pivotal roles in various cellular and tissue processes, including inflammation, metabolic disorders, and cancer. In this study, we employed high-resolution mass spectrometry to investigate SL metabolism in plasma samples obtained from control subjects (n=55), COVID-19 patients (n=204), and convalescent individuals (n=77). These data were correlated with inflammatory parameters associated with the clinical severity of COVID-19. Additionally, we utilized RNAseq analysis to examine the gene expression of enzymes involved in the SL pathway. Our analysis revealed the presence of thirty-eight SL species from seven families in the plasma of study participants. The most profound alterations in the SL species profile were observed in patients with severe disease. Notably, the predominant sphingomyelin (SM d18:1) species emerged as a potential biomarker for COVID-19 severity, showing decreased levels in the plasma of convalescent individuals. Elevated SM levels were positively correlated with age, hospitalization duration, clinical score, neutrophil count, as well as the production of IL-6 and IL-8. Intriguingly, we identified a putative protective effect against disease severity mediated by SM (d18:1/24:0), while ceramide (Cer) d18:1/24:1 and d18:1/24:0 was associated with increased risk. Moreover, we observed enhanced expression of key enzymes involved in SL pathway, in blood cells from severe COVID-19 patients, suggesting a primary flow towards Cer generation in tandem with SM synthesis. These findings underscore the potential of SM as a prognostic biomarker for COVID-19 and highlight promising pharmacological targets. By targeting sphingolipid pathways, novel therapeutic strategies may emerge to mitigate the severity of COVID-19 and improve patient outcomes.


Subject(s)
Sphingolipidoses , Metabolic Diseases , Pneumonia , Critical Illness , Niemann-Pick Disease, Type A , Neoplasms , COVID-19 , Inflammation
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.22.504760

ABSTRACT

Airway epithelial cells (AEC) are the first in contact with SARS-CoV-2 and drive the interface with macrophage to generate inflammation. To elucidate how those initial events contribute to the immunopathology or to dysregulate the immune response observed in severe and critical COVID-19, we determined the direct and indirect interactions of these cells. AEC lineage (Calu-3) infected with SARS-CoV-2 and epithelial cells (CD45-EpCAM+) from intubated COVID-19 patients showed high expression of CD95L. Infected-Calu-3 cells secreted IL-6, and expressed annexin V and caspase-3, apoptosis markers. The direct interaction of macrophages with sorted apoptotic Calu-3 cells, driven by SARS-CoV-2 infection, resulted in macrophage death and increased expression of CD95, CD95L and CD163. Macrophages exposed to tracheal aspirate supernatants from intubated COVID-19 patients or to recombinant human IL-6 exhibited decreased HLA-DR and increased CD95 and CD163 expression. IL-6 effects on macrophages were prevented by tocilizumab (anti-IL-6 receptor mAb) and Kp7-6 (CD95/CD95L antagonist). Similarly, lung inflammation and death of AEC were decreased in CD95 and IL-6 knockout mice infected with SARS-CoV-2. Our results show that the AEC-macrophage interaction via CD95/CD95L signaling is an initial key step of immunopathology of severe COVID-19 and should be considered as a therapeutic target.


Subject(s)
Pneumonia , Death , COVID-19 , Inflammation
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.20.439992

ABSTRACT

The global emergence of Covid-19 has caused huge human casualties. Clinical manifestations of the disease vary from asymptomatic to lethal, and the symptomatic form can be associated with cytokine storm and non-homeostatic inflammatory response. In face of the urgent demand for effective drugs to treat Covid-19, we have searched for candidate compounds using a drug repurposing approach based on in silico analysis followed by biological validation. Here we identified celastrol, a pentacyclic triterpene isolated from Tripterygium wilfordii Hook F - a plant used in traditional Chinese medicine - as one of the best compounds out of 39 repurposed drug candidates. Celastrol reverted gene expression signature from SARS-CoV-2-infected cells; bound with high-affinity energy to viral molecular targets such as main protease (Mpro) and receptor-biding domain (RBD); inhibited SARS-CoV-2 replication in monkey (Vero and Vero-ACE2) and human (Caco-2 and Calu-3) cell lines; and decreased interleukin-6 (IL-6) secretion in SARS-CoV-2-infected human cell lines. Interestingly, celastrol acted in a concentration-dependent manner, with undetectable signs of cytotoxicity. Therefore, celastrol is a promising lead drug candidate to treat Covid-19 due to its ability to suppress SARS-CoV-2 replication and IL-6 production in infected cells, two critical events in the pathophysiology of this disease.


Subject(s)
Severe Acute Respiratory Syndrome , Drug-Related Side Effects and Adverse Reactions , COVID-19 , Inflammation
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.07.20248970

ABSTRACT

Cytokine storms and hyperinflammation, potentially controlled by glucocorticoids, occur in COVID-19; the roles of lipid mediators and acetylcholine (ACh) and how glucocorticoid therapy affects their release in Covid-19 remain unclear. Blood and bronchoalveolar lavage (BAL) samples from SARS-CoV-2- and non-SARS-CoV-2-infected subjects were collected for metabolomic/lipidomic, cytokines, soluble CD14 (sCD14), and ACh, and CD14 and CD36-expressing monocyte/macrophage subpopulation analyses. Transcriptome reanalysis of pulmonary biopsies was performed by assessing coexpression, differential expression, and biological networks. Correlations of lipid mediators, sCD14, and ACh with glucocorticoid treatment were evaluated. This study enrolled 190 participants with Covid-19 at different disease stages, 13 hospitalized non-Covid-19 patients, and 39 healthy-participants. SARS-CoV-2 infection increased blood levels of arachidonic acid (AA), 5-HETE, 11-HETE, sCD14, and ACh but decreased monocyte CD14 and CD36 expression. 5-HETE, 11-HETE, cytokines, ACh, and neutrophils were higher in BAL than in circulation (fold-change for 5-HETE 389.0; 11-HETE 13.6; ACh 18.7, neutrophil 177.5, respectively). Only AA was higher in circulation than in BAL samples (fold-change 7.7). Results were considered significant at P<0.05, 95%CI. Transcriptome data revealed a unique gene expression profile associated with AA, 5-HETE, 11-HETE, ACh, and their receptors in Covid-19. Glucocorticoid treatment in severe/critical cases lowered ACh without impacting disease outcome. We first report that pulmonary inflammation and the worst outcomes in Covid-19 are associated with high levels of ACh and lipid mediators. Glucocorticoid therapy only reduced ACh, and we suggest that treatment may be started early, in combination with AA metabolism inhibitors, to better benefit severe/critical patients.


Subject(s)
COVID-19 , Pneumonia
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.22.20199703

ABSTRACT

Background: The uncontrolled inflammatory response plays a critical role in the novel coronavirus disease (COVID-19) and triggering receptor expressed on myeloid cells-1 (TREM-1) is thought to be intricate to inflammatory signal amplification. This study aims to investigate the association between soluble TREM-1 (sTREM-1) and COVID-19 as a prognostic biomarker to predict the disease severity, lethality and clinical management.Methods: We enrolled 91 patients with COVID-19 in domiciliary care (44 patients) or in hospital care (47 patients), who were classified after admission into mild, moderate, severe and critical groups according to their clinical scores. As non-COVID-19 control, 30 healthy volunteers were included. Data on demographic, comorbidities and baseline clinical characteristics were obtained from their medical and nurse records. Peripheral blood samples were collected at admission and after hospitalization outcome to assess cytokine profile and sTREM-1 level by specific immunoassays Results: Within COVID-19 patients, the highest severity was associated with the most significant elevated plasma levels sTREM-1. Using receiver operating curve analysis (ROC), sTREM-1 was found to be predictive of disease severity (AUC= 0.988) and the best cut-off value for predicting in-hospital severity was [≥] 116.5 pg/mL with the sensitivity for 93.3% and specificity for 95.8%. We also described the clinical characteristics of these patients and explored the correlation with markers of the disease aggravation. The levels of sTREM-1 were positively correlated with IL-6, IL-10, blood neutrophils counts, and critical disease scoring (r= 0.68, p<0.0001). On the other hand, sTREM-1 level was significantly negative correlated with lymphocytes counting, and mild disease (r= -0.42, p<0.0001). Higher levels of sTREM-1 were related to poor outcome and death, patients who received dexamethasone tended to have lower sTREM-1 levels. Conclusion: Our results indicated that sTREM-1 in COVID-19 is associated with severe disease development and a prognostic marker for mortality. The use of severity biomarkers such as sTREM-1 together with patients clinical scores could improve the early recognition and monitoring of COVID-19 cases with higher risk of disease worsening. Key words: COVID-19; sTREM-1; Inflammation; Biomarker; Severity; Mortality.


Subject(s)
Coronavirus Infections , Critical Illness , Death , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL